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- ABSTRACT

The Perron-Frobenius Theorem states that a matrix with

nonnegative entries has at least one nonnegative eigenvalue
of maximal absolute value and a corresponding eigenvector
with nonnegative components. iin-this paper we discuss
generalizations of this celebrated theorem that locate an
eigenvalue of maximal absolute value and the components of

a corresponding eigenvector within a certain angle of the
complex plane depending on the angle which contains the
entries of the matrix. A complete description of the 2 X 2

‘case as well as partial results for the general case are given.
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1.1

1. Introduction and Statement of Results.

The Perron-Frobenius Theorem states that a matrix with nonnegative
elements has at least one nonnegative eigenvalue of maximal absolute value.
It seems natural to ask for generalizations that locate an eigenvalue of
maximal absolute valu€ within a2 certain angle of the complex plane depending
on the angle which contains the elements of the matrix.

More precisely, let us consider the family An(a) of all nXn

complex matrices A (ajk) whose entries are contained in a sector

L}

S(a) = {z: |arg z| S a; 0 S a S fixed}.

For each A ¢ Qn(a) let B = B(A) denote the minimal (nonnegative) angle
for which the sector S(B) contains an eigenvalue of A with maximal

absolute value. Thus, defining

By() =  sup B(4),
Ach (o)

we pose the following

PROBLEM 1. Give B (o) as a function of @ and n.

The Perron-Frobenius Theorem states that

S

B,(0) =0, n=1,2,3,....

Another simple observation is that for any m <n and Ac¢ A (0), ) {

we have A B0 ¢ én(a), vhere O, is the k X k zero matrix. Thus,

-

(1.1) B (@) is a nondecreasing function of n.




1.2

Obviously,
1.2) By (@) = a;
so (1.1) and (1.2) yield
B () ; By(@) =a, n=1,2,3,... .

Since

‘A,n(a) Cén(a') fqr a' > a',
‘ we also find that

Bn(a) is_a nondecreasing function of a.

& In Section 2 we evaluate Bz(a) and obtain some partial results for

arbitrary n, as stated in the following theorem:

THEOREM 1.
j% (i) If n=2 then . T r

ﬁz(a)=ﬁ a+} for §<a§g

Ln_fg_l'_(!)lzt-. '

(ii) If n23 is odd then

= r
o) = for a >3- .

(iii) If n2 4 is even then




-

1.3

. o-1
B(@) 2@+ == n for

and

- n
Bn(a) =n for a> 3 =3 -

Note the discontinuity of Bz(u) at o = n/f4.

We also note that part (i} of the theorem implies that in general, A
in én(a) does not have a square root in én(a/Z).

Recall tha. the Perron-Frobenius Theorem not only proves that for
matrices with nonnegative entries an eigenvalue of largest absolute value
is positive, but also that a corresponding eigenvector can be chosen with
noanegative components.

With this in mind, for each A ¢ éu(u) we denote y = y(A) to
be the minimal (nonnegative) angle such that the sector S(Yy) contains
the components of an eigenvector corresponding to an eigenvalue of maximal
absolute value which lies in S(B(A)). Hence, defining -

Y (@) = sup  y(a),
A€ a (@

we pose:

PROBLEM 2. Determine yn(a) as a function of a and n.

The Perron-Frobenius Theorem tells us that
¥,(0) =0, n=1,2,3,...,
and we obviously have

¥, (a) = 0.

e T




1.4

Also, as for Bn(a), it is not hard to see that

v (@) is a nondecreasing function of n,

and

yn(a) is a nondecreasing function of a.

Finally, since any eigenvector (xl,...,xn)' € gn (prime denoting
the transpose) can be rotated so that its components are embedded in the

sector S(n-n/n) it follows that
n-1
yn(a) S -5

In analogy with the Perron-Frobenius Theorem it is perhaps natural

to ask whether

Y (@) = B (@), n=2,3,4,...,

or whether there is any nontrivial bound for yn(u) wvhen « > 0. This
turns out to be incorrect, at least for all n 2 4, as stated in the

following theorem which is proven in Section 2:
THEOREM 2.
(i) If n=2 then

a+ % for 0<as %}

Yy (@) =

NIH
rh
(4
"
-]
v

&~

(ii) If n =3 then

i S—

%,
:"y




1.5
73(0)22a+’§‘ for 0<asyy
and
=2 o
(iii) If n 2 4 then
(1.3) Y@ =22n for a>o.
For n 2 2 note the discontinuity of yn(a) at a =0,
We also note that in fact, for n=2, a2n/4; n=3, a2n/l12;
and n24, a> 0; yn(a) attains its maximal possible value.
Theorems 1 and 2 and the inequality in (1.3) can be summarized in
the following two tables:
n 2 2 2 3 3 3
v n |n n n n n n I :
o °<°'§Z Z<“$i a>z 0<asﬁ ﬁ<u§3 a>e :
. n
pn(a) a at+z n s a s a n
© 2 2
wo| ek |5 |5 |rme i | T Ee | g
Table 1. Cases n = 2,3




1.6
n n 2z 4 even n 2 4 even n2bdeven {n250dd |0 25 odd
n T 14 n n 148
| @ oceasyy |m<eipy | ¥ ma [0 n| 90
| B, (@) 2« za+la n 2« n
wo | Be | o= | s | sl | =
E
Table 2. The case n 2 4
We have not settled the following questions:
ﬁ QUESTION 1. 1f 0O S o $n/2n and n 2 3, is Bn(u) = a?
ﬂ QUESTION 2. What is ﬁn(a) if n24 is even and n/2n < a £ n/(2n-2)?
QUESTION 3. If 0 < & S /12, what is Yy(a)?
¢
i
1
1
i
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2.1

2. Proofs.

Prcof of Theorem 1. Since for all n and a we have

as Bn(a) <n,

and since Bn(a) is a nondecreasing function of a, it remains to

obtain the upper boundé

(2.1) Bz(a) fa, a é% s
(2.2) By Sa+3,z<asy,

and the lower bounds

> n-1 n_ L
(2.3) Bn(d) Z2at+t—mn, n 2 2 even, o < @ < 303

(2.4) B (@) 2m, n23 odd, >,
(2.5) B(@) 2m, n24 even, a> ig:i .

We start with the upper bounds.

Since multiplication of a matrix by a constant multiplies the
eigenvalues by the same constant, we may assume that the spectral radius
of A, i.e., the maximal absolute value of the eigenvalues, is 1.
Moreover, since the eigenvalues of the conjugate matrix A = (;ij) are
the complex conjugates of the eigenvalues of A, we can assume that

-

A= eia(A) is an eigenvalue of A.




2.2

With these assumptions we first prove that
(2.6) B(A) <a +m/2 for A€ Qz(a), 0sasnj2.

Let A= (ajk) € Qz(a) have eigenvalues A = eiB(A) and A'. Since

A+ A =trA=a 1 + a,, € S(a)

1
and since
AMel
vhere U is the unit disc centered at the origin, then
A€ UN(-A+ 8(a)).
Thus,

(2.7) A+A e+ ns@ =T

so that T is the intersection of the unit disc centered at A and -

the sector S(a). Therefore, if
B(A) 2 a + m/2,

x then T = {0}, and by (2.7), A' = -A. Hence, Al =1 with

larg A'] < arg A = B(A) in contradiction to the definition of B(A).

| S Thus we have (2.6), and (2.2) follows.

Now, fix o with

0$asn/,

and let us prove (2.1).




2.3
Suppose that for some A = (ajk) € —&2(“) with eigenvalues A = eiB(A)
and A', [A'l €1, we have
(2.8) a < B(A) <a + nf2.

Since PB(A) < a + n/2, then T # {0}. Further, since B(A) > a,

then if max; arg 35 < o, there exists a positive number r so that

max arg(a.. A) = a.
=,z H

We can thus replace A by the matrix

I |

A = a7

(A + rAl) € ﬁz(")

whose eigenvalues are A and A" = (A' + rA)/(1 + r). Hence, [A"]| <1,
unless A' = A = —;— tr A € §(A) which contradicts the assumption that
B(A) > a. So, we may use Ao instead of A, drop the subscript, and

assume without loss of generality that
(2.9) arg a;, = a.
By (2.7) we have

(2.10) a;, + 2y, = tr AeTl; ﬁ

8y, €-a,, +1T.

-

Also, by (2.9), (2.10), and since 3,, € S(a), we have a5, €T; so if

we denote by a!. the point symmetric to a

1 in T, then (see Figure 1)

11
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2.4
C o ait o )
a], = 2 cos(p - a) a;, € a;; t T
We may not have
- 1
322 7 %n
For in that case
' — - - - = i(Z(X‘ﬁ).
AM=trA~A= a, + ail A=e H
hence | A'l =1 and by (2.8), larg A'l <larg Al which contradicts the

definition of p. Therefore,

a9 ¥ 2135

so
arg(A - 322) < arg(A - ail)’
and
(2.11) arg{A - a.l)(A - a22) = arg(MA - all) + arg(A - 322) ;

< arg(A - all) + arg(A - ail) =(@0+a)+ (n-06+a)=n+2a.
Since A € én(a) we also have
(2.12) arg(A - all)(A - 322) = arg(A - all) + arg(A - 322) 2 2B > 2a,
and
(2.13) -2a £ arg 2,351 s 20.

But now, since 0 S a $ n/4, equations (2.11)-(2.13) contradict

the characteristic equation of A,




e e e e

(A - a))A = ayy) = 2y,
Thus, assumption (2.8) fails; so in view of (2.6) we must have
B(A) Sa, 0 S a<n/h,

and (2.1) follows.

2.5
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2.7

The main tools in obtaining the lower bounds in (2.3)-(2.5) are the

n X n circulants

0 %1 - o ¥
(2.14) A= an-l aO an-3 an-2

1 22 -1 %
vhose eigenvalues are

= 2 n-1 i o=
Aj a, + ale + azwj + ...+ an_luﬁ » J=1,...,n,
vhere
2nij
w; = e 13/“, j=1,...,n,

are the n-th roots of unity.

Assume now that

o > nt/2n, 7 -

and set the aj in (2.14) to zero except for the entries

a = eia’ 2, = rei(u-n/n—s),

r>0, 0<&e<n/2n, 0 Smsn-2,

where €& is chosen sufficiently small so that A ¢ An(u) and m will be

determined later. The eigenvalues are

Aj = (an + mjal"l)‘“.n i=L...mny, .

and we see that their maximal absolute value is obtained for the j that

mininizes




- = - - =R _ 28
larg a arg(wjam+l)l = larg a - arg w; - arg am+1| ,n oL+ el.

Since 0 < € < n/2n, this occurs at j = 1; thus,

|A1| > lkjl , ji=2,...,n;

and consequently
B(A) = |arg All.

Moreover, since the argument of a + a1 goes from arg a =a to

=a+n/n-¢& as r goes from zero to infinity, then

arg wa ..
- D _
arg Al = atg(aln + wlamﬂ)wl = arg(alll + wlan+l) + 2mm/n
runs through the interval
[y + 2m 2041
(2.15) L, = (é t=,a+ S —m s) .

Now, if n is odd and
n/2n < a < A/n,

we pick

-1
n=s

so the interval lm in (2.15) contains =x. Hence, there exists a circulant

A¢g én(a) such that

B(A) = |arg All =n.




Therefore,

n
By(@) zm, n23 odd, <ac<l,

and by the monotonicity of ﬂn(a) in (1.4) we get (2.4).
If an is even aﬁd
n/2n < a £ n/(2n-2),
ve choose

so that the interval Lm contains the point @ + 1t - R/n - 2¢.

we can find a circulant A ¢ én(a) with
B(A) = |arg A\l =a + - n/n - 2¢;

and since €& was arbitrarily small, we have

ﬂn(a) 2 a+ Eil R, n22 even, gi <a$s iﬁzi ,

so (2.3) is established.
Finally, if n is even and
a > n/(2n-2),

then
o> n/2e

where £ = n-1 is odd. Thus, by (2.4),

. - Py Ty

2.9

Thus,




2.10

Bple) 2 m;

and since (0) is a nondecreasing function of n, we obtain (2.5). O
n

Proof of Theorem 2. Since for all n and o we have

n-1
Yn(u) s

and since yn(a) is a nondecreasing function of a, it suffices to obtain

the upper bound

F2-16) V(o) Sa+ % , 0<ats % ,

and the lower bounds

(2.17) yz(a)za+'zt, o<as',},
Tt n

(2.18) 73(u)22a+-2-, o<a§1—2,

(2.19) yn(a)a“—;ln, n4, ad>o.

Starting with the upper bound in (2.16), we let

'« S nfa4,

-

and take any A = (‘jk) € 52(a). As in the previous proof, we may
assume without loss of generality that the eigenvalues of A are A

and A' with




A=A g,

Now let (xl,xz)' be an eigenvector corresponding to A. If one of
the components vanishes, the other may be taken to be 1; so in this case
Yy(A) = 0. If the eigenvector does not have a zero coordinate we may

assume that it is of the form (1,x)' where x # 0, thus

(2.20) y(A) = %hrg xl.
We have
81 Y ax = A,
a5, + a,,X = Ax,

and therefore

(2.21) X = = AA- T -

Since a S n/4, then by part (i) of Theorem 1 we have B(A) S «
so the interval connecting the origin and the point A lies in §(a),
and the line T through A perpendicular to the interval {[0,A]

(see Figure 2) must intersect the positive real axis. Now, if a

and a,, are located on the right of I then
lall+ 822' >2|Al =2,
in contradiction to the fact that
Iall + ‘22" IAMAtl s IA]+ (A 5 2.

Thus, say, a,, is on the (closed) left side of I, and

R W e e




L K
larg(A-all)l S larg A| + 7=B+7.

2.12

So finally, by (2.20) and (2.21), and since B £ a, we have

A-all

812

y(a) = %larg x| = Jlarg

1
2

< %'arg(h-all)l + %latg 312| s %'(ﬂ + g

and (2.16) follows.

+a)§u+%,
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Figure 2
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For the lower bounds, our tools are n X n lower triangular

matrices of the form

A= | a A' , FATh < Al
a ) A'

vwhere evidently, the eigenvector belonging to A is given, up to an

arbitrary factor, by

(2.22) a, x 2%, ., @D vith x= ey

A e - = ot e

H
1
1
.
1
}
]

With these matrices, we now make suitable choices for the quantities

A, A' and a for different values of n.

First, for n =2 and
- J'.p
0<asn/e,

set

A. io A' = A - Gei(ﬂﬂl/Z"s)’ a= ax’

- @ »

where € > 0 is small and then &8 > 0 is chosen so small that [A'[ <1

sand A€ én(u). The vector in (2.22) is now

e-i(za+n/2-e);

(1,x)', x=

thus

C e




Y4) = Jlarg x| =a+ % - 5,

and since € is arbitrarily small we obtain (2.17).

. For n =3 and

- 0<asnfl2,

we make the same choice of A, A', and a as for n =2, so

the eigenvector in (2.22) is

" (1, x, xz)l’ X = e-i(2a+n/2-6).

Therefore,

20 + nf2 - €,

it

y(A) = %|arg 22|

and again, since € is arbitrarily small, we obtain (2.18).

For n=4 and o > 0 we set
A=e¥® A =cose, a=sing, 0<e<a.

The corresponding eigenvector in (2.22)‘is a, i, -1, -i)'; so
y(a) = 2— R

and (2.19) holds for n = 4.
Finally, if n> 4 and a« > 0, our choice is
- = éZﬂi/n’

A=1, AN =1- ew,, ac=g, & >0, wy

where again, if € is sufficiently small then A ¢ An(u) and IA'l <1,




2.16
. The eigenvector in (2.22) is now
(1, w, wf, ceey w?-l)';
so
v =%lx,
and the proof of (2.20) is complete. . a

Note that the lower bounds in‘(2.17)-(2.19) were obtained for matrices
in A (¢) whose eigenvalues are all contained in §(x). In fact, for
n 24 we found matrices A such that Y(A) obtained the maximal possible

value, while all the eigenvalues were arbitrarily close to 1.
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